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Precision medicine as a control problem

Traditional precision medicine Proposed vision
Classifythen treat Dynamic, feedback control
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A Viewed as a classification task A Viewed as an optimal control task
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The need for simulation

A Many control approaches use existing data to retrospectively learn control policies
A Simulation enables virtual experimentation: going beyond what has been tried

A Recent advances in optimal control have enabled learning controllers for complex, high
dimensional simulations

Learning controll ers

_ Clinical Data ~ | 4 Biological Simulation

Able to explore new
interventions and/or
combinations

Scope Limited to wh
of interventions been tried

Interpretability Limited by statistical power Limited only by
of interventions of existing data computation

Dimensionality Low-dimensional, discrete  High-dimensional,
of interventions (e.g. 17 2drugs, 3doses) continuous

Dynamics
of interventions

Typically static Dynamic, adaptive
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Sepsis agenbased simulationg Demo
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Reinforcement learning (RL)

Given an
observation
choose the

action

expected to maximize
the cumulative

reward

RL agent

learns by inter-
acting with the

environment

observation
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observation

Problem Formulation: Observation Space acter

reward

Observation Space
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observation

Problem Formulation: Action Space 2o
reward

GCSF: 0.0

| Lf |

Action Space

IL1. 0.9 )

IL8: -0.5 Differentially control all Augment or m@acf"“%l
I B cytokines at once fixed amount;

IL10: 0.3 One c ok'ne% {
| ¥ _ MEEHE 6 O
Size: [-1, 1]* Size: 29 O IL12 O
IL12: 0.1 - : : -
I . Clinically plausible with Clinically plau$dld 5 O
TNE: -0.2 multi-channel infusion pump \
[ L4 |
(O}

. . el
Lawrence Livermore National Laboratory N A‘Sf@g\ 7
National Nuclear Security Administration

LLNL-PRES-751582




observation

Problem Formulation: Reward Signal action

reward

A The simulation naturally provides only sparse, binary rewards:
life/death
i [EAAI_[ABA

A To aid learning, we added two terms to the reward signal

1. Potentiatbased reward shaping term
A 1St 3IFdzA RS GKS w[ 3ISyd 26 NR &3

policy i _ (AAT KiGAAAT KiQR

2. A penalty for taking actions
A Regularizerpromotes conservative actions
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Unique challenges of the sepsis environment

Failed to solve using human experience, oo
genetic algorithms, and classify A control
approaches

Challenge “Atari 2600

High-dimensional state

High-dimensional actions n n
Sparse rewards sometimes n
Long time horizons n
Computationally expensive n
Unsolvable by humans n
Stochastic None None High
Each episode has different dynamics n
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Training the DRL agent
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Evaluating the learned policy

A Mortality rate under learned policy A Clinical insight
1 Trained patient: 469, 0% 1 IL-1 (proinflammatory) is unregulated
1 Across 500 patients: 4980 0.8% early and suppressed late

T Suppression comes later for patients
with larger initial infections
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Next steps: Improving clinical plausibility

A Tradeoff betweercontrollabilityandclinical relevance

Aspect Next step
Clinically implausible Clinically plausible
Observability Remove infection and
damage from state
Observation Add 3 hr observation
delay delay
Observation Decrease to
frequency observation every 6 hr
Action set Identlfy_eX|st|ng
mediators
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Longterm vision: Closedoop control system

Patient

Multi-
channel
infusion

pump

Cﬁ:) Closed-loop dynamic dosing

Closed-loop insulin pump
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/ - Nat Biomed Eng 1:72 (2017)
b DRL-informed

control policy

https://openclipart.org/
https://www.mediware.com/home-care/blog/new-legislation-help-home-infusion-patients/
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